60 research outputs found

    Waveguide Holography: Towards True 3D Holographic Glasses

    Full text link
    We present a novel near-eye display concept which consists of a waveguide combiner, a spatial light modulator, and a laser light source. The proposed system can display true 3D holographic images through see-through pupil-replicating waveguide combiner as well as providing a large eye-box. By modeling the coherent light interaction inside of the waveguide combiner, we demonstrate that the output wavefront from the waveguide can be controlled by modulating the wavefront of input light using a spatial light modulator. This new possibility allows combining a holographic display, which is considered as the ultimate 3D display technology, with the state-of-the-art pupil replicating waveguides, enabling the path towards true 3D holographic augmented reality glasses

    The impact of comorbid anxiety on quantitative EEG heterogeneity in children with attention-deficit/hyperactivity disorder

    Get PDF
    ObjectiveThe objective of this study was to compare quantitative electroencephalography (Q-EEG) characteristics of children with Attention-deficit/hyperactivity disorder (ADHD), taking into account the presence of a comorbidity for anxiety disorder. It also sought to investigate the impact of comorbid anxiety on the Q-EEG heterogeneity of children with ADHD.MethodA total of 141 children with ADHD but without comorbid anxiety (ADHD-Only), 25 children with a comorbidity for anxiety disorder (ADHD-ANX) and 43 children in the control group were assessed. To compare Q-EEG characteristics between groups, we performed ANCOVA (Analysis of Covariance) on relative power and theta/beta ratio (TBR) controlling for covariates such as age, sex, and FSIQ. Relative power values from 19 electrodes were averaged for three regions (frontal, central and posterior). Furthermore, cluster analysis (Ward’s method) using the squared Euclidian distance was conducted on participants with ADHD to explore the impact of anxiety on the heterogeneity of Q-EEG characteristics in ADHD.ResultsThere were no significant group differences in cognitive and behavioral measures. However, significant differences between groups were observed in the theta values in the central region, and the beta values in the frontal, central and posterior regions. In post hoc analyses, It was found that the ADHD-ANX group has significantly higher beta power values than the ADHD-Only group in all regions. For the theta/beta ratio, the ADHD-Only group had significantly higher values than the ADHD-ANX group in frontal, central and posterior regions. However, the control group did not show significant differences compared to both the ADHD-Only and ADHD-ANX group. Through clustering analysis, the participants in the ADHD-Only and ADHD-ANX groups were classified into four clusters. The ratios of children with comorbidities for anxiety disorder within each cluster were significantly different (χ2 = 10.018, p = 0.019).ConclusionAttention-deficit/hyperactivity disorder children with comorbid anxiety disorder showed lower theta power in the central region, higher beta power in all regions and lower TBR in all regions compared to those without comorbid anxiety disorder. The ratios of children with comorbidities for anxiety disorder within each cluster were significantly different

    Mutations in DDX58, which Encodes RIG-I, Cause Atypical Singleton-Merten Syndrome

    Get PDF
    Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.Glu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373Ala) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies

    Mutations in DDX58, which Encodes RIG-I, Cause Atypical Singleton-Merten Syndrome

    Get PDF
    Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.GLu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373A1a) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies.X116452Ysciescopu

    Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor

    Get PDF
    Thalamotomy at the ventralis intermedius nucleus for essential tremor is known to cause changes in motor circuitry, but how a focal lesion leads to progressive changes in connectivity is not clear. To understand the mechanisms by which thalamotomy exerts enduring effects on motor circuitry, a quantitative analysis of directed or effective connectivity among motor-related areas is required. We characterized changes in effective connectivity of the motor system following thalamotomy using (spectral) dynamic causal modeling (spDCM) for resting-state fMRI. To differentiate long-lasting treatment effects from transient effects, and to identify symptom-related changes in effective connectivity, we subject longitudinal resting-state fMRI data to spDCM, acquired 1 day prior to, and 1 day, 7 days, and 3 months after thalamotomy using a non-cranium-opening MRI-guided focused ultrasound ablation technique. For the group-level (between subject) analysis of longitudinal (between-session) effects, we introduce a multilevel parametric empirical Bayes (PEB) analysis for spDCM. We found remarkably selective and consistent changes in effective connectivity from the ventrolateral nuclei and the supplementary motor area to the contralateral dentate nucleus after thalamotomy, which may be mediated via a polysynaptic thalamic–cortical–cerebellar motor loop. Crucially, changes in effective connectivity predicted changes in clinical motor-symptom scores after thalamotomy. This study speaks to the efficacy of thalamotomy in regulating the dentate nucleus in the context of treating essential tremor. Furthermore, it illustrates the utility of PEB for group-level analysis of dynamic causal modeling in quantifying longitudinal changes in effective connectivity; i.e., measuring long-term plasticity in human subjects non-invasively

    Curved holographic optical elements and applications for curved see-through displays

    No full text
    Holographic optical elements (HOEs) have been used as important tools for implementing augmented reality (AR) and see-through displays because they are transparent and thin. Moreover, as HOEs usually come in the shape of a thin film, they can be bent, used for coating, or attached to curved surfaces. While they can be used to implement curved AR displays, however, the applications of the curved HOE have not been sufficiently studied. In this paper, an analysis method for curved/bent HOEs using the coupled-wave theory and the numerical ray tracing method is introduced. Using this method, the influence of the surface curvature on the optical characteristics of HOEs, including the aberration and diffraction efficiency, was analyzed. Also presented herein is a method of designing the optimal curvature that can reduce the aberration. Curved HOEs can be applied to see-through displays such as head-mounted displays (HMDs), head-up displays (HUDs), or transparent screens. They can be used to expand the field of view (FOV) and to reduce the form factor. The proposed analysis method provides a useful guideline for designing practical curved see-through displays

    Finding Key Structures in MMORPG Graph with Hierarchical Graph Summarization

    No full text
    What are the key structures existing in a large real-world MMORPG (Massively Multiplayer Online Role-Playing Game) graph? How can we compactly summarize an MMORPG graph with hierarchical node labels, considering substructures at different levels of hierarchy? Recent MMORPGs generate complex interactions between entities inducing a heterogeneous graph where each entity has hierarchical labels. Succinctly summarizing a heterogeneous MMORPG graph is crucial to better understand its structure; however it is a challenging task since it needs to handle complex interactions and hierarchical labels efficiently. Although there exist few methods to summarize a large-scale graph, they do not deal with heterogeneous graphs with hierarchical node labels. We propose GSHL, a novel method that summarizes a heterogeneous graph with hierarchical labels. We formulate the encoding cost of hierarchical labels using MDL (Minimum Description Length). GSHL exploits the formulation to identify and segment subgraphs, and discovers compact and consistent structures in the graph. Experiments on a large real-world MMORPG graph with multi-million edges show that GSHL is a useful and scalable tool for summarizing the graph, finding important structures in the graph, and finding similar users.N

    Dynamic Shear Degradation of Geosynthetic–Soil Interface in Waste Landfill Sites

    No full text
    Geosynthetics and soil particles inevitably come into contact, resulting in a geosynthetic–soil interface. The discontinuity of the materials at the interface causes an intricate shear response, especially under dynamic loads. In the present study, the effects of chemical aggressors of the leachate from a waste landfill site on the cyclic shear behaviors of a geosynthetic–soil interface were investigated. The Multi-Purpose Interface Apparatus (M-PIA) that can simulate cyclic simple shear conditions was utilized, and 72 sets of cyclic simple shear tests were conducted. The Disturbed State Concept (DSC) was employed to quantitatively estimate the shear stress degradation. As a result, new disturbance functions and parameters that represent the characteristics of the dynamic shear degradation at the interface were evaluated. Additionally, a numerical back-prediction was performed to verify the accuracy and applicability of the DSC parameters. Numerical interpolation procedures were suggested and enabled to reproduce the degradation successfully. Consequently, a general methodology was established to estimate the cyclic shear stress degradation of the geosynthetic–soil interface in consideration of chemical effects
    corecore